GEPAConfig¶
gepa.optimize_anything.GEPAConfig(engine: EngineConfig = EngineConfig(), reflection: ReflectionConfig = ReflectionConfig(), tracking: TrackingConfig = TrackingConfig(), merge: MergeConfig | None = None, refiner: RefinerConfig | None = None, stop_callbacks: StopperProtocol | Sequence[StopperProtocol] | None = None)
dataclass
¶
Top-level configuration for :func:optimize_anything.
Groups all settings into nested component configs. Sensible defaults are
provided — most users only need to set engine.max_metric_calls and
optionally reflection.reflection_lm.
Example::
config = GEPAConfig(
engine=EngineConfig(max_metric_calls=200, parallel=True, max_workers=16),
reflection=ReflectionConfig(reflection_lm="openai/gpt-5.1"),
refiner=RefinerConfig(max_refinements=2),
)
Attributes¶
engine: EngineConfig = field(default_factory=EngineConfig)
class-attribute
instance-attribute
¶
reflection: ReflectionConfig = field(default_factory=ReflectionConfig)
class-attribute
instance-attribute
¶
tracking: TrackingConfig = field(default_factory=TrackingConfig)
class-attribute
instance-attribute
¶
merge: MergeConfig | None = None
class-attribute
instance-attribute
¶
refiner: RefinerConfig | None = None
class-attribute
instance-attribute
¶
stop_callbacks: StopperProtocol | Sequence[StopperProtocol] | None = None
class-attribute
instance-attribute
¶
Functions¶
__post_init__()
¶
Handle dicts passed in (e.g., from a JSON/YAML file).